LINGKARAN

Dalam geometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam jarak tertentu, yang disebut jari-jari, dari suatu titik tertentu, yang disebut pusat. Lingkaran adalah contoh dari kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar.

Elemen lingkaran

Elemen-elemen yang terdapat pada lingkaran, yaitu sbb:

  • n sebuah titik di dalam lingkaran yang menjadi acuan untuk menentukan jarak terhadap himpunan titik yang membangun lingkaran sehingga sama. Elemen lngkiaran yang berupa titik, yaitu :
    1. Titik pusat (P)
      merupakan jarak antara titik pusat dengan lingkaran harganya konstan dan disebut jari-jari.
  • Elemen lingkaran yang berupa garisan, yaitu :
    1. Jari-jari (R)
      merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran.
    2. Tali busur (TB)
      merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda (TB).
    3. Busur (B)
      merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran.
    4. Keliling lingkaran (K)
      merupakan busur terpanjang pada lingkaran.
    5. Diameter (D)
      merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas.
    6. Apotema
      merupakan garis terpendek antara tali busur dan pusat lingkaran.
  • Elemen lingkaran yang berupa luasan, yaitu :
    1. Juring (J)
      merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya.
    2. Tembereng (T)
      merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya.
    3. Cakram (C)
      merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.

Persamaan

Suatu lingkaran memiliki persamaan

(x - x_0)^2 + (y - y_0)^2 = R^2 \!

dengan R\! adalah jari-jari lingkaran dan (x_0,y_0)\! adalah koordinat pusat lingkaran.

Persamaan parametrik

Lingkaran dapat pula dirumuskan dalam suatu persamaan parameterik, yaitu

x = x_0 + R \cos(t) \!
y = y_0 + R \sin(t) \!

yang apabila dibiarkan menjalani t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang x-y.

Luas lingkaran

Luas lingkaran

Luas lingkaran memiliki rumus

A = \pi R^2 \!

yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran

dA = rd\theta\ dr

dalam koordinat polar, yaitu

\int dA = \int_{r=0}^R \int_{\theta=0}^{2\pi} rd\theta\ dr<br />
= \int_{r=0}^R rdr \int_{\theta=0}^{2\pi} d\theta<br />
= \frac 1 2 (R^2-0^2) \ (2\pi-0) = \pi R^2 \!” /></dd>
</dl>
<p style=Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam R_1\! dan jari-jari luar R_2\!.

[sunting]Penjumlahan elemen juring

Area of a circle.svg

Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.

Luas juring

Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;

A(R,\theta) = \frac 1 2 R^2 \theta \!

dengan batasan nilai θ adalah antara 0 dan . Saat θ bernilai , juring yang dihitung adalah juring terluas, atau luas lingkaran.

Luas cincin lingkaran

Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam R_1\! dan jari-jari luar R_2\!, yaitu

A_{cincin} = \pi (R_2^2 - R_1^2) \!

di mana untuk R_1 = 0\! rumus ini kembali menjadi rumus luas lingkaran.

Luas potongan cincin lingkaran

Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh

A_{potongan\ cincin} = \frac \pi 2 (R_2^2 - R_1^2) \theta \!

yang merupakan luas sebuah cincin tak utuh.

Keliling lingkaran

Keliling lingkaran memiliki rumus:

L = 2\pi R\!

Panjang busur lingkaran

Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus

L = R \theta \!

yang diturunkan dari rumus untuk menghitung panjang suatu kurva

dL = \int \sqrt{1 + \left( \frac{dy}{dx}\right) ^2 } dx \!

di mana digunakan

y = \pm \sqrt{R^2 - x^2} \!

sebagai kurva yang membentuk lingkaran. Tanda \pm mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.

Pi atau π

Nilai pi adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling K dengan diameternya D:

 \pi = \frac K D
RELATED POST ::
About these ads

About NICO MATEMATIKA

Welcome to my blog. My name is Nico. Admin of this blog. I am a student majoring in mathematics who dreams of becoming a professor of mathematics. I live in Kwadungan, Ngawi, East Java. Hopefully in all the posts I can make a good learning material to the intellectual life of the nation. After the read, leave a comment. I always accept criticism suggestion to build a better me again .. Thanks for visiting .. : mrgreen:

Posted on July 28, 2011, in education and tagged , , . Bookmark the permalink. 4 Comments.

  1. kyak yang ada di wikipedia materinya

  2. Kunjungan balik kucing. wah, mystique kok bisa bagus begini ya. dipakani opo … ?

    salam :)

  1. Pingback: daftar isi « matematika blog for education

LEAVE A COMMENT IN HERE. COMMENTING IN HERE IS ALWAYS AUTO APPROVE. PLEASE NO SPAM!!! BECAUSE I HATE SPAM... THANKS A LOT..... :mrgreen:

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 1,779 other followers

%d bloggers like this: