Injection

Injective composition: the second function nee...

Image via Wikipedia

A function is injective (one-to-one) if every possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. The formal definition is the following.

The function f: A \to B is injective iff for all a,b \in A, we have f(a) = f(b) \Rarr a = b.
  • A function f : AB is injective if and only if A is empty or f is left-invertible; that is, there is a function g : f(A) → A such that g o f = identity function on A. Here f(A) is the image of f.
  • Since every function is surjective when its codomain is restricted to its image, every injection induces a bijection onto its image. More precisely, every injection f : AB can be factored as a bijection followed by an inclusion as follows. Let fR : Af(A) be f with codomain restricted to its image, and let i : f(A) → B be the inclusion map from f(A) into B. Then f = i o fR. A dual factorisation is given for surjections below.
  • The composition of two injections is again an injection, but if g o f is injective, then it can only be concluded that f is injective. See the figure at right.
  • Every embedding is injective.

 

 

SEE ALSO ::

injections, surjections and bijections

Posted on October 5, 2011, in education and tagged , , , , , , , . Bookmark the permalink. 3 Comments.

  1. Makin lama makin mantabh aja neh blognya bro.
    sukses selalu buat Om nico.

  1. Pingback: Bijection « Nico For Math

  2. Pingback: Surjection « Nico For Math

LEAVE A COMMENT IN HERE. COMMENTING IN HERE IS ALWAYS AUTO APPROVE. PLEASE NO SPAM!!! BECAUSE I HATE SPAM... THANKS A LOT..... :mrgreen:

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: