METODE NEWTON

Animation of Newton method

NICO FOR MATH

Dalam analisis numerik, metode Newton (juga dikenal sebagai metode Newton-Raphson), yang mendapat nama dari Isaac Newton dan Joseph Raphson, merupakan metode yang paling dikenal untuk mencari hampiran terhadap akar fungsi riil. Metode Newton sering konvergen dengan cepat, terutama bila iterasi dimulai “cukup dekat” dengan akar yang diinginkan. Namun bila iterasi dimulai jauh dari akar yang dicari, metode ini dapat meleset tanpa peringatan. Implementasi metode ini biasanya mendeteksi dan mengatasi kegagalan konvergensi.

Diketahui fungsi ƒ(x) dan turunannya ƒ ‘(x), kita memulai dengan tebakan pertama, x0 .   Hampiran yang lebih baik x1 adalah

x_{1} = x_0 - \frac{f(x_0)}{f'(x_0)}.\,\!

Deskripsi metode

Gagasan metode ini adalah sebagai berikut: kita memulai dengan tebakan awal yang cukup dekat terhadap akar yang sebenarnya, kemudian fungsi tersebut dihampiri dengan garis singgungnya (yang dapat dihitung dengan alat-alat kalkulus, dan kita dapat menghitung perpotongan garis ini dengan sumbu-x (yang dapat dilakukan dengan mudah menggunakan aljabar dasar). Perpotongan dengan sumbu-x ini biasanya merupakan hampiran yang lebih baik ke akar fungsi daripada tebakan awal, dan metode ini dapat diiterasi.

Misalkan ƒ : [ab] → R adalah fungsi terturunkan yang terdefinisi pada selang [ab] dengan nilai merupakan bilangan riil R. Rumus untuk menghampiri akar dapat dengan mudah diturunkan. Misalkan kita memiliki hampiran mutakhir xn. Maka kita dapat menurunkan hampiran yang lebih baik, xn+1 dengan merujuk pada diagram di kanan. Kita tahu dari definisi turunan pada suatu titik bahwa itu adalah kemiringan garis singgung pada titik tersebut, yaitu:

f'(x_{n}) = \frac{ \mathrm{rise} }{ \mathrm{run} } = \frac{ \mathrm{\Delta y} }{ \mathrm{\Delta x} } = \frac{ f( x_{n} ) - 0 }{ x_{n} - x_{n+1} }.\,\!

Di sini, f ‘ melambangkan turunan fungsi f. Maka dengan aljabar sederhana kita mendapatkan

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. \,\!

Kita memulai proses dengan nilai awal sembarang x0. Metode ini biasanya akan mengerucut pada akar, dengan syarat tebakan awal cukup dekat pada akar tersebut, dan bahwa ƒ’(x0) ≠ 0.

About NICO MATEMATIKA

Welcome to my blog. My name is Nico. Admin of this blog. I am a student majoring in mathematics who dreams of becoming a professor of mathematics. I live in Kwadungan, Ngawi, East Java. Hopefully in all the posts I can make a good learning material to the intellectual life of the nation. After the read, leave a comment. I always accept criticism suggestion to build a better me again .. Thanks for visiting .. : mrgreen:

Posted on October 14, 2011, in education and tagged , , , , , , , . Bookmark the permalink. 2 Comments.

  1. Totok Bluesman Silalahi

    good job !!! i love math to…especially in operation research area…

    btw…ini rumusnya pakai “math on web” kan ?

  2. I AM SORRY I HAVE A DIFFICULT TO GET IT, BECAUSE IT ALWAYS BE ERROR AND ERROR. PLEASE MAKE IT BE BETTER AND EASIER TO GET IT! KEEP DOING BEST AND ON FIRE!🙂

LEAVE A COMMENT IN HERE. COMMENTING IN HERE IS ALWAYS AUTO APPROVE. PLEASE NO SPAM!!! BECAUSE I HATE SPAM... THANKS A LOT..... :mrgreen:

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: